Journal of Organometallic Chemistry, 84 (1975) C31-C32
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

GROUP IVB—RHODIUM COMPLEXES: NEW ORGANORHODIUM ANIONS IN SYNTHESIS

ROBIN HILL and SELBY A.R. KNOX

Department of Inorganic Chemistry, The University, Bristol BS8 1TS (Great Britain) (Received November 15th, 1974)

Summary

The novel anions $[Rh(X)(CO)(\eta^s \cdot C_5 H_5)]^-$ (X = H, GeMe,) have been produced, and employed as an entry into organo-Group IVB—rhodium chemistry.

The similarities in the chemistry of $Fe(CO)_5$ and of the complexes $M(CO)_2(\eta^5 - C_5 H_5)$ (M = Co, Rh, Ir) have often been referred to. However, although $Fe(CO)_5$ is known [1] to yield the anionic complexes $[Fe(CO)_4]^2$ and $[Fe(H)(CO)_4]^-$ which have been instrumental in the development of carbonyliron chemistry, no comparable species have been derived from $M(CO)_2(\eta^5 - C_5 H_5)$. In this communication we describe two such organorhodium anions, and illustrate their utility in the synthesis of organo-Group IVB—rhodium complexes.

Treatment of either Rh(CO)₂ (η^5 -C₅ H₅) or Rh(I)₂ (CO)(η^5 -C₅ H₅) [2] briefly in tetrahydrofuran with a sodium amalgam gives an air-sensitive yellow-black solution with properties characteristic of its containing [Rh(H)(CO)(η^5 -C₅ H₅)]. Attempts to isolate this anion by precipitation with large counter ions have so far been unsuccessful. The IR spectrum of the solution, however, shows a single carbonyl absorption at 1892 cm⁻¹, typical of a uninegative anion rather than of [Rh(CO)(η^5 -C₅ H₅)]²⁻¹. The existence of the related [Fe(H)(CO)₄] in aqueous solution is well established [3], and it seems likely that in the presence of traces of water in the solvent [Rh(H)(CO)(η^5 -C₅ H₅)] is formed here.

Reaction of the anion solution with trimethylbromogermane or trimethylchlorostannane yields (20-30%) very pale yellow low-melting complexes Rh(MMe₃)₂ (CO)(η^5 -C₅H₅) (M = Ge, Sn [4]) (for M = Ge, ν (CO) (hexane) 1995 cm⁻¹; τ 4.70(5H), 9.59(18H)); products which are not inconsistent with [Rh(H)(CO)(η^5 -C₅H₅)] being the effective nucleophile [5]. Significantly, a very air-sensitive pale yellow liquid isolated as a minor product of the reaction with Me₃ SnCl was identified from its IR (ν (CO) 1999 cm⁻¹)

and mass $((M - H - nCO)^{*}, (n = 0, 1))$ spectra as Rh(H)(SnMe₃)(CO)(η^{5} -C₅H₅) Only IR-observable quantities of Rh(PbMe₃)₂(CO)(η^{5} -C₅H₅) were obtained from the anion and Me₃ PbCl, but the known [4] tin—rhodium heterocycle [Rh(μ -SnMe₂)(CO)(η^{5} -C₅H₅)]₂ was characterised as a product of the reaction with Me₂ SnCl₂.

Reaction of Rh(MMe₃)₂ (CO)(η^5 -C₅H₅) (M = Ge, Sn) with iodine in hexane at room temperature proceeds rapidly with cleavage of one Rh-MMe3 bond, forming (50-55%) Rh(I)(MMe₃)(CO)(η^5 -C₅H₅). The dark-red crystalline germanium complex (m.p. $79-80^{\circ}$; ν (CO) 2031 cm⁻¹; τ 4.35 (5H), 9.09(9H)) may be reduced with sodium amalgam in tetrahydrofuran to produce an airsensitive solution with the reactivity anticipated of the IRh(GeMe₃)(CO)- $(\eta^5 - C_5 H_5)$ anion (again, efforts to isolate this species as a salt have been unsuccessful). Thus, on reaction with Me₃SnCl pale yellow liquid Rh(GeMe₃)- $(SnMe_3)(CO)(\eta^5 - C_5H_5)(\nu(CO) 1989 \text{ cm}^{-1}; \tau 4.71(5H), 9.57(9H), 9.67(9H))$ is formed (40%). Minor products Rh(MMe₃)₂ (CO)(η^5 -C₅H₅) (M = Ge, Sn) were also obtained, indicating that the anion $[Rh(GeMe_3)(CO)(\eta^5 - C_5 H_5)]^$ may disproportionate to some small extent in solution to give Rh(GeMe₃)₂- $(CO)(\eta^5 - C_5 H_5)$ and $[Rh(CO)(\eta^5 - C_5 H_5)]^2$ (presumably converted to $[Rh(H)(CO)(\eta^5 - C_5 H_5)]^-$). It is interesting to note that iodine preferentially cleaves the Rh—Sn bond of Rh(GeMe₃)(SnMe₃)(CO)(η^5 -C₅H₅), forming Rh(I)(GeMe₃)(CO)(η^5 -C₅H₅) exclusively.

Finally, we wish to report that a surprising reaction occurs between Rh(I)(GeMe₃)(CO)($\eta^5 \cdot C_5 H_5$) and ($\eta^1 \cdot C_5 H_5$)SnPh₃, giving in high yield red crystalline Rh(I)(SnPh₃)(CO)($\eta^5 \cdot C_5 H_5$) (m.p. 155-156°; ν (CO) 2031 cm⁻¹; τ 2.3-2.7(15H), 4.20(5H)). The anticipated formation of an $\eta^1 \cdot C_5 H_5$ derivative of rhodium is evidently unfavourable relative to an exchange of Group IVB ligands similar to that observed [6] for organogermanium—ruthenium complexes upon reaction with organotin hydrides.

Acknowledgement

We thank the British Petroleum Company for the award of a research studentship (to R.H.), and Johnson, Matthey and Co. Ltd. for a generous loan of rhodium trichloride.

References

```
    R.B. King, Advan. Organometal. Chem., 2 (1964) 157 and ref. therein.
    R.B. King, Inorg. Chem., 5 (1966) 82.
```

³ J.R. Case and M.C. Whiting, J. Chem. Soc., (1960) 4632.

⁴ E.W. Abel and S. Moorhouse, Inorg. Nucl. Chem. Letters, 7 (1971) 905.

⁵ See, for example, R.D. George, S.A.R. Knox and F.G.A. Stone, J. Chem. Soc. Dalton, (1973) 972.

⁶ S.A.R. Knox and F.G.A. Stone, J. Chem. Soc. (A)., (1971) 2874.